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Why Heavy ion physics 2 

T.D. Lee (1975):  
In HEP we have concentrated on…. distribute higher & higher  
amount of energy into a region with smaller & smaller dimensions.  
In order to study the question of “vaccum”, we should…  
distribute higher energy over a relatively large volume.  

Nuclear Matter 

Hot QCD matter 



Connection to cosmology 
n  HI collision is the only way to emulate the condition few 

microseconds after the big-bang, and study properties of quark 
gluon matter present as that time. 

n  Connection to some outstanding questions of cosmology: evolution 
of early universe, matter/anti-matter asymmetry, strangelets.  
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Agnes Mocsy, Paul Sorensen arXiv:1008.3381 



Relativistic Heavy Ion Collider (RHIC) 

n  Experiments: PHENIX& STAR 
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n  RUN 2000-2011 
U+U next year 

Hot QCD, CEP search 

Cold QCD: NPDF, Saturation physics. 
WG2S1 C. Perkins, J. Lajoie 

Spin physics, ref for HI 



Space-time history of heavy ion collisions 5 

initial state pre-equilibrium QGP & expansion Phase transition           Freeze-out 

400 6000 400à6000 in 10-23 second! 
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HEP HI 



Extracting properties of Quark Gluon Plasma 

n  How hot/dense is the matter? 
n  How the bulk matter behave? 
n  What is the stopping power of the matter? 
n  How the matter respond to perturbations?  
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Understand and control the geometry of bulk matter is very important! 
Centrality,  
Species & energy scan 
p+p, p+A references 



How hot/dense is the matter? 
n  Energy density estimated from total ET measurement 
n  Temperature estimated from thermal γ radiation 
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How hot/dense is the matter? 
n  Energy density estimated from total ET measurement 
n  Temperature estimated from thermal γ radiation 

n  Thermal component of the spectra <T> =220 MeV 
n  Initial temperature from models, 300-600 MeV 
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T = 220 ± 20 MeV

Well above Lattice QCD prediction of a phase transition to 
quark gluon plasma at Tc ~ 170 MeV and ~1 GeV/fm3! 



Hadron chemistry 

n  Population of hadron species following statistical distribution 
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Indicates a single Hadronization  
Temperature  ~ 175 MeV,  µB ~ 29 MeV  (200 GeV) 

Nearly equal amount matter and antimatter!! 



RHIC as an antimatter machine 
n  Heaviest antimatter 

nucleus observed by STAR 
n  Anti-hypertriton in 2010 

n  Anti-helium4 in 2011  
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!
3H (n + p + !)

n  Identification via TOF (95ps) and dE/dx of TPC (7.5%) 

4He (n + n + p + p )

Identfied18          candidates in 109 
Au+Au events or 0.5 trillion tracks! 
 

4He

Science 328, 58 (2010) 

arXiv:1103.3312 
 Submitted to Nature 



RHIC as an antimatter machine 12 

n  Rate consistent with coalescent nucleosysthesis models 
n  Require dense population of almost equal amount of q and qbar over an 

extended volume! (12 antiquarks)  

n  Rate decrease by 103 for each nucleon added. Extremely unlikely to 
generate anti-neuclus in cosmic event except in big-bang! 
n  Observe naturally produced       would indicate a large amount of isolated anti-

matter in the Universe 
4He



AMS-1 on board the ISS 
n  AMS-2 scheduled: April 29, 2011 at 3:47 PM 
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AMS antiHelium/Helium sensitivity: 10-9 



How does the matter behave? 
n  QGP expands hydrodynamically with low viscosity (small mfp) 
n  Efficiently transfer asymmetry of initial geometry to azimuthal 

anisotropy in momentum space 
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How well the matter flows? 
n  Modeled by relativistic viscous hydrodynamic 

n  Stringent constraint on kinematic viscosity 

n  Approaching conjectured quantum lower limit 
n  Small mean free path, strongly interacting 
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H Song, arXiv:1101.4638 

Extensive efforts both 
experimentally and 
theoretically to refine 



Other strong coupled/interacting system 16 

Ball drop in dense granular sands  
 Nature 432, 689 

Strongly interacting electrons in 
Graphene PRL 103, 025301 

Strongly coupled cold Fermionic atoms in a 
cigar trap exhibit anisotropy flow Science 298 2179 

 

Universal behavior of strongly interacting 
medium independent of the force involved!! 

Science 331, 58 (2011) 



Flow of identified hadrons 

n  Hadron flow behave like sum of flow of constituent quarks 
n  Flow develop at partonic stage 
n  QGP hadronize via quark coalescence 
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Simple coalescence picture: 
 
Baryon: v2(pT)=3v2,q(pT/3) 
Meson: v2(pT)=2v2,q(pT/2) 

~pT 



Calibrated  
LASER 

Matter we want to study 
Calibrated  
photometer 

What is the stopping power of the matter?  

n  Hard-scattered quarks or gluons (jets) as probe 
n  q+qàq+q or g+g 

n  Single hadron/jet yield 

n  Coincidence rate of away-side jet 
n  Angular correlations of di-hadron or di-jets  

N1 N2 

Leading  
particle 
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Discovery of Jet quenching 19 

Leading hadron yield 

Ø  In Au+Au collisions we mostly see  one “jet” 
at a time! Surface emission 

High pT correlation 



Jet quenching as probe of medium properties 20 
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Jet quenching as probe of medium properties 

n  Extensive measurements for many 
probes with different medium coupling. 

n  Direct γ, no suppression expected 
n  heavy quarks D, B, surprisingly strong 

suppression!!  

n  Constrain medium properties 
n  suggest medium is opaque and strongly 

interacting   
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Color charge  
scattering centers  

dE
dx
~!" kT

2 L

Radiative: 

Interpretation 

γ 

e± from D,B 

S. Bass et al. arXiv:0808.0908 



Full reco-jet as a probe 
n  Directly probe jet modifications (energy, shape and FF) 
n  Challenging due to large & fluctuating underlying event  

 
 

n  Complimentary to LHC: large luminosity at RHIC allow access to 
large x (x~0.5) quark jets (less quenched than gluon jet); also 
cleaner γ-jet 
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Extensive efforts on full jet reco, di-jet and γ-jet correlation underway 
WG4S1 A. Hanks, J. Rojo, H. Pei, WG4S3 M. Connors  



Reaction of the Perfect fluid? 
n  The lost energy has to go somewhere… shock wave in nuclear 

matter? 
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High pT correlation 

Viscous hydro simulation 

Δϕ=ϕa-ϕb 

Many calculations suggest that in principle it should 
exist, but likely to be washed out at the end: 
viscosity, freezeout, wake contribution 

Medium response? 

Jet quenching 



What is this extra stuff in di-hadron correlation? 24 

Au+Au at RHIC  CMS  p+p  (N>110) Phys.Rev.C80:064912,2009 

Flow or jet in-medium response? 

Long range Δη structure seen on both near- and 
away-side, also in near-side high mul. p+p up to Δη=4  
q  Near side : ridge 
q  Away side: double hump, double shoulder 

Causality argument seems to rule out 
transport of jet modifications into large Δη  

Jet1 Jet2 

!!

!!

√s=7TeV 



Initial geometry and elliptic flow correlation 

n  Global correlations with initial geometry lead to self-correlations 
among particles. 

n  Has been subtracted in two particle correlation already. 
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Higher order harmonic flow? 
n  Initial density fluctuations of nucleons, leads to higher moments of 

deformations, each has its own orientation.  
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Higher order harmonic flow? 
n  Initial density fluctuations of nucleons, leads to higher moments of 

deformations, each has its own orientation.  
n  They are transferred to pT space, thanks the low viscosity of sQGP 

n  Each space term gives one anisotropy term: εnàvn and ψn=ΨRP,n. 
n  In 2-p correlation, pairs appear as narrow peak at near-side (all moments in 

phase), a broad peak at away-side (out of phase) 
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Since flow is a global event characteristics, the correlation should be extended in Δη.  

simulation 



Measurement of higher order harmonics 
n  First measurement of v3 and v4 from PHENIX 
n  Two particle correlation exhausted by v1-v4! 
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pT (GeV/c) 

Remember vn is the power spectrum in angle space 

|Δη|>1.5 



Probing the initial geometry fluctuation 29 

Stay tuned! 

ε2 

ε3 

ε4 

q  Constrain η/s 
q  Constrain shape 

of initial geometry! 

P. Sorensen arxiv1102.1403 

For Illustration only 



A 3D-view of partons in the proton? 30 

A.V. Belitsky, D. Muller, NP A711 (2002) 118c 

Shape of the matter via 
final state interactions? 



Summary 

n  We created a Quark Gluon medium that is hot and dense; strongly 
interacting (hence small mean free path and low viscosity); and very 
opaque to jets; and hadronize via quark coalesce. 

n  We are able to quantify some of its properties, e.g. 
<T>=220MeV,µb=29MeV, η/s= fewx1/4π, qhat~3-13GeV/fm3. 

n  The inviscid collective expansion provide a way to probe the initial 
partonic geometry of the nucleus. 
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But what is Quark Gluon Plasma?  
“The major discoveries in the first five years at RHIC must be 

followed by a broad, quantitative study of the fundamental 
properties of the quark gluon plasma …”  

  
The Frontiers of Nuclear Science A Long Range Plan - 2007 

Next Decade of RHIC, WG7S1 E. O’Brien, J. Dunlop 



The future: sPHENIX 32 



n  s 

33 



High pT: path length dependent quenching 

pT>6 GeV/c 

V2 measurement for high pT particles 

n  Anisotropy at low pT is sensitive to collective flow 
n  High pT is more sensitive to the path length dependence of energy loss.  
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Low pT: collective expansion 

pT<3 GeV/c 

QCD-perturbation theory 

AdS/CFT String theory 



Probing the L dependence of energy loss 
n  v2 measurement extended to beyond 10 GeV/c, well into eloss region 

n  pQCD models failed to reproduce the magnitude of v2 up to 10 GeV 
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Surprisingly, more consistent with AdS/CFT!! 
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RAA
Jet 

n  Smaller jet definition produces more suppression in yield 
n  kT jets smaller than anti-kT 

n  Relation between RAA
Jet  and RAA is non-trivial. 

n  RAA
Jet depends on jet shapes in both AA and pp. 
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p+p Au+Au 
e.g. same leading hadron as pp, but ring 
like soft fragmentsè RAA

Jet  < RAA 



Disentangling jet and flow for low pT correlation 

n  Global correlations with impact parameter lead to self-correlations among 
particles. But flow peak coincides with jet pairs 

n  2-p correlation is separated into jet and elliptic flow components – up to 
late 2009  nucl-ex/0507004   arXiv:0801.4545 

n  We now know this is insufficient 
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Improved constraint on η/s 
n  High precision double differential measurement allow 

between constraints on η/s. 
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PRL105,2010 
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H Song, arXiv:1101.4638 



n  d 
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Geometry of the bulk matter 40 

x 

z 

y 

n  Observables controlled by the geometry 
n  Some common terminologies 

n  Participants, spectators, number of collisions. 

n  Centrality: the amount overlap, percentile of cross-section or number 
of participants  

n  Reaction plane: orientation of the fireball, defined by beam & b 
direction. 


